qhnw.net
当前位置:首页 >> sinx+Cosx >>

sinx+Cosx

sinx+cosx=√2(sinx*√2/2+cosx*√2) cosx=√2/2,sinx=√2/2 所以sinx+cosx=√2(sinxcosπ/4+cosxsinπ/4)=√2sin(x+π/4) 请注意,本人从来不复制别人!!

sinx+cosx=√2(√2/2sinx+√2/2cosx)=√2(sinxcosπ/4+cosxsinπ/4)=√2sin(x+π/4)一般公式是asinx+bcosx=√(a+b)*sin(x+y)其中tany=b/a

y=sinx + cosx =√2sin(x+π/4)所以周期是2π

√2*sin(x+1/4*π). 解答过程如下: sinx+cosx=√2*√2/2*sinx+√2*√2/2*cosx =√2*cos(π/4)*sinx+√2*sin(π/4)*cosx =√2*(cos(π/4)*sinx+sin(π/4)*cosx) =√2*sin(x+π/4) 扩展资料 1、特殊角度的三角函数值 sinπ/6=1/2、cosπ/6=√3/2、sinπ/4=√2/2

√2sin(x+π/4)

sorry,我不会打根号 sinx+cosx=根号2sin(x+π/4) 我们老师讲的,叫引进辅助角 用那个和差公式化出来的

sinx+cosx =√2(√2/2*sinx+√2/2*cosx) =√2(sinπ/4sinx+cosπ/4cosx) =√2cos(x-π/4)

sinx+cosx=根号2/2(根号2*sinx+根号2*cosx)=根号2/2*sin(x-45度)

sinx+cosx=√2(sinx√2/2+cosx√2/2)=√2(sinxcosπ/4+cosxsinπ/4)=√2sin(x+π/4) 取值范围从-√2到√2.

sinx+cosx=√2[(√2/2)sinx+(√2/2)cosx]=√2(sinxcosπ/4+cosxsinπ/4)=√2sin(x+π/4)

网站首页 | 网站地图
All rights reserved Powered by www.qhnw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com